<< Hide Menu
7 min read•june 18, 2024
Peter Apps
Peter Apps
You've been (likely) prepping for months for this exam! 🤓 One test can never measure everything you've learned from studying physics. So please, don't let your AP scores define you!
Now that we've gotten that out of the way, let's focus a bit more on the actual exam.
The AP Physics 2 exam (just like almost every other exam) consists of 2 sections: Multiple Choice Questions (MCQs) and Free-Response Questions (FRQs).
In Section 1, you will have 90 minutes to answer 50 MCQs, whereas, in Section 2, you will have 90 minutes to answer 4 FRQs, which are listed below. Each section is weighted at 50% of your exam score, so it's important to prepare for both sections! 📚
Image Courtesy of AP Physics 2 Course & Exam Description
As far as trying to guess what topics will be on the exam, College Board has given us this rough estimate of how the questions will be broken down:
Image Courtesy of AP Physics 2 Course & Exam Description
This section mostly consists of (you guessed it) Multiple Choice Questions. You're more likely to be asked a question about modeling, argumentation, or mathematically calculating a value than you are to be asked questions about experimental methods, or data analysis.
Image Courtesy of AP Physics 2 Course & Exam Description
All of these questions can be found on the AP Physics 2 Course and Exam Description
Answers (Don't peek!👀)
Kinetic Energy of a gas is proportional to the temperature (K = 3/2*kBT). You can calculate the temperature of the gas at each point using the Ideal Gas Law (PV = nRT). Plugging in for each of the 3 locations, we see that point A and C both have a temperature of (3P0V0) / (nR) while point B has a temperature of (P0V0) / (nR). Therefore A and C have the same temperature which is higher than point B.
Pressure is defined as Force per unit Area. A higher pressure will result in a higher force being applied to the piston. Point C has 3 times the pressure as A & B so it will have a higher force.
Answer (Don't peek!👀)
The correct answer is C. The resistance of the cylinder is proportional to the length and inversely proportional to the cross-sectional area R = pL / A because the area of the cylinder depends on the square of the radius, doubling both the length and the radius will result in 1/2 as much resistance which should double the current.
Answer (Don't peek!👀)
The correct answer is B. Use Bernoulli's continuity equation
Answer (Don't peek!👀)
The correct answer is C. Bulbs X and Y are connected directly to the battery through the switch and therefore are controlled directly by the switch. Bulb Z relies on current passing through the capacitor to be lit. Initially the uncharged capacitor allows current to flow through it, until the voltage of the capacitor reaches the same voltage as the battery. When this happens there is no flow of current through bulb Z and it goes out.
So you've made it through the MCQ, now we've got 90 minutes each to tackle 4 FRQ's. Unlike the MCQs, we know the four question types. There will be an experimental design (12 points), qualitative/quantitative translation (12 points), paragraph argument (10 points), and one additional question (10 points). We're still focusing a lot on theoretical relationships, math routines, and arguments. This is also the section where derivations come into play.
Vocab is fun!
All of these questions can be found on the AP Physics 2 Course and Exam Description
Answers (Don't peek!👀)
A) There are a bunch of different procedures you could choose from. The big idea is to use the probes to measure the pressure & temperature, but not to take the pressure reading until the temperature has stabilized, using the water bath as needed to maintain a constant temperature. Then change the volume of the piston and collect another measurement. Taking at least 2 measurements per volume level will help reduce experimental errors as well.
B) Here's a sample response: The student is not correct. As the pressure and volume change the temperature also changes. The gas temperature would need to be measured to verify that it has reached equilibrium with the water bath.
C) Taking the Pressure and Volume at a constant temperature, you could do two different options to determine if the gas is ideal.
V = (nR / P)*T The slope of the graph is nR/P where R and P are constants. So find the slope of the graph multiply it by P/R to find n.
E) Theoretically the volume of an ideal gas would be 0 at absolute zero. So extend the trendline backwards until it crosses the x-axis. This gives a rough estimate of absolute zero to be -300C. (You won't get credit for -273C because the graph isn't that precise).
Answers (Don't peek!👀)
A) The two other charges apply forces on the 500nC charge as shown
So we need to find the magnitude of each force using Coulomb's Law, then calculate the vertical and horizontal components of each force, sum them to get the components of the total force then determine the resultant.
B) In triangles 3 and 4, the fields from each of the three spheres all point toward the center of the triangle or away from it. This is a symmetrical arrangement, so the net force is zero.
C) Potential is not a vector, so the potentials from each sphere simply add. Positive charges produce positive potential, and negative charges produce negative potential. The charges are equal, so all charges produce the same magnitude of potential at the center. V3 is caused by a net of 3 positive charges, V2 by 2 positives, V1 by 2 negatives, and V4 by 3 negatives. So the ranking should be V3 > V2 > V1 > V4.
© 2025 Fiveable Inc. All rights reserved.