<< Hide Menu
4 min read•june 18, 2024
Peter Apps
Peter Apps
This topic is a catch-all for more advanced applications of Charge Distributions, Gauss' Law, and calculating Electric Potentials. All of the concepts are covered in the previous sections, so if you need to, re-read those first.
Up until now, we've dealt with charged objects as points, but sometimes we can't approximate the charge to be in a single location. These extended charge distributions are cases where the charge is in a ring, or line, or sheet.
The proccess for tackling all of these are very similar. We're going to chunk the total charge Q into into pieces, dq, which each contributes a partial field, dE. The entire equation is dE = k dq/r^2 * r, where r is the radius vector. By integrating that equation, we can sum up all of the dq which sums all of the dE to find the total field E.
Ring of Charge Example:
Line of Charge:
Point, Hoop, or Sphere (fully enclosed):
Sphere (not fully enclosed):
This is more straightforward. For all the shapes, simply apply Gauss' Law to find an expression for E, then plug that into
1.
(b) Relative to infinity, the total potential at r2 is V = k(Q1 + Q2)/r2, when we're between the sphere, we no longer have a change due to V_Q2 because the potential is CONSTANT inside of a conductor (while the Electric Field is zero -- this is an important thing to remember for the AP exam!). However, V_Q1 still varies according to 1/r. This means that E will be the correct answer.
2.
3.
D is correct. Outside the spheres E = 0 since the total charge enclosed is 0. Inside the negative shell, the potential looks like a positively charged sphere (constant when r < a, and proportional to 1/r when r > a).
(courtesy of the College Board website, AP Physics C: Electricity + Magnetism 2007 Free Response Section, Question #2)
(a) Using Gauss’s law, derive expressions for the magnitude of the electric field as a function of radius r in the following regions.
i. Within the solid sphere (r < a)
ii. Between the solid sphere and the spherical shell (a < r < 2a)
iii. Within the spherical shell (2a < r < 3a)
iv. Outside the spherical shell (r > 3a)
(b) What is the electric potential at the outer surface of the spherical shell (r = 3a)? Explain your reasoning.
(c) Derive an expression for the electric potential difference V_X - V_Y between points X and Y shown in the figure.
The scoring guidelines are located at this PDF from the College Board website for Question #2.
© 2024 Fiveable Inc. All rights reserved.